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This paper investigates a new design for computer disk drive disks that raises
their natural frequencies. In this new design, a pattern of small, dense, internal
channels or voids is distributed axisymmetrically about the midplane of the disk.
These channels increase the natural frequencies of the disk by removing mass from
the midplane of the disk while maintaining the coupling between the de#ections of
the upper and lower surfaces of the disk. This practice is commonly employed in
I-beams and honeycombed sandwich panels, but the channeled geometry proposed
here has not been previously considered or studied. This paper presents a detailed
analytical model for a channeled disk, speci"cations for optimal channeled disk
design, and experimental corroboration. Numerical results show that the natural
frequencies of a properly channeled disk can be 10}100% higher than those of
a uniform disk, depending on the size of the channels. The orientation of the
channels does not signi"cantly a!ect the natural frequencies, but, in the optimal
design, the channels do not extend through the whole disk. Instead, they begin at
an optimal, central, transition radius and radiate outward to the outer edge of the
disk. Disks with this optimal channel design may be competitive with uniform
thickness disks for disk drive applications in terms of both natural frequency
and cost. ( 2000 Academic Press
1. INTRODUCTION

Vibration reduction of high-speed rotating disks is a primary concern in the design
of industrial circular saws and hard disk drives. In each technology, the design
objective is the same: maximize the lowest natural frequency measured by
a stationary observer. However, because of di!erent performance requirements,
there are many more techniques available for raising natural frequencies of circular
saws than there are for disk drive disks. Saw natural frequencies can be increased by
introducing in-plane stresses using plastic deformation [1, 2], thermal gradients
[3], or massive wedges [4, 5]. Saw frequencies can also be increased by tapering the
saw [6]. The number and locations of slots and holes, which are commonly
introduced to relieve the thermal stresses caused by cutting, can be optimized for
vibration purposes [7}9].

None of these techniques is applicable to disk drives. High-density magnetic
recording requires exceptionally smooth and #at disk surfaces. Tapering the disk or
2-460X/00/020355#21 $35.00/0 ( 2000 Academic Press
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introducing slots or holes would degrade the surface geometry and therefore limit
recording density. Techniques that introduce in-plane stresses in the disk generally
work only if the lowest natural frequency has two or more nodal diameters [10}13].
For circular saws, this is typically the case since saws operate at 60}85% of the "rst
critical speed. However, since disk drives operate at 10}20% of the "rst critical
speed, the lowest natural frequency usually has one nodal diameter, and traditional
in-plane stress introduction techniques would actually reduce that frequency
[13].

Only the simplest techniques for increasing natural frequencies are applicable to
disk drives, and those are often too expensive to employ. For example, disk natural
frequencies could be increased by replacing aluminum with a material that is sti!er
and lighter, such as glass or ceramics [14]. However, these materials are generally
more expensive than aluminum and often have less natural damping. Frequencies
could also be raised by strategically constructing the disks from di!erent layers of
material [15}17]. Unfortunately, layered disks require additional manufacturing
costs and may have bonding imperfections and di$culties. The cost of a 3)5 in
aluminum core for a hard disk drive (&$0)30) is almost entirely raw material
cost.

Modern disk drives are using thinner and faster rotating disks, both of which
reduce the lowest natural frequency. These changes make disk drives more
susceptible to vibration-induced recording errors [18]. The long-used design rule
that all disk drive vibration resonances be above 500 Hz has become more di$cult
to achieve, and, in some disk drives, has not been maintained [19]. Yet, despite the
pressing need for higher frequency disk designs, most disk drive dynamics research
has taken the disk as given and studied the stability of the disk coupled to other
disk drive components such as the read/write head [12, 20], the surrounding air
[21], or other disks stacked on a spindle [19, 22].

In this paper, we investigate a new disk design that may satisfy the stringent
frequency, geometry, and cost requirements of disk drive disks. The design may also
be applicable to circular saws or turbines, although that is not the primary focus. In
this new design, a pattern of small, dense, internal channels or voids is distributed
axisymmetrically about the midplane of the disk. These channels increase the
natural frequencies of the disk by removing mass from the midplane of the disk
while maintaining the coupling between the de#ections of the upper and lower
surfaces of the disk. This practice is commonly employed in I-beams and
honeycombed sandwich panels, both of whose natural frequencies are higher than
those of a corresponding, uniform thickness beam or plate. In fact, manufacturing
disk drive disks from a honeycombed sandwich panels was proposed over 25 years
ago [23]. A crucial di!erence between a honeycombed sandwich panel disk and the
pattern of channels considered here is that the pattern of channels is potentially
moldable from a single casting or stamping operation. Consequently, the cost of
a channelled disk may be competitive with that of a uniform disk (or possibly even
less expensive, since less material is used). The cost of manufacturing is a crucial
issue in determining whether or not the proposed design is practical.

In develping an analytical model for the channelled disk, we assume that the
density of channels is su$ciently high such that the disk can be modelled using
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variables that are averaged locally over both the channels and the ribs of the disk.
This kind of average modelling has been used successfully in the analysis of spiral
grooved bearings [24}26]. In this averaged model, the material properties of the
channelled disk become orthotropic with the principal axes oriented along the
channels [27}29]. This simpli"cation enables us to make quantitative predictions
of increased frequencies and optimize the channel design without modelling
individual channels and ribs.

Numerical results show that the natural frequencies of a properly channelled disk
can be 10}100% higher than those of a uniform disk, depending on the size of the
channels. The orientation of the channels does not signi"cantly a!ect the natural
frequencies, but, in the optimal design, the channels do not extend through the
whole disk. Instead, they begin at an optimal, central, transition radius and radiate
outward to the periphery of the disk.

The paper is organized as follows. In section 2 the averaged model is developed
describing the disk geometry, in-plane stresses due to rotation, and bending.
Optimal results for both stationary and rotating disks are determined in section 3.
In section 4, a simpli"ed model is developed in which only the average thickness
and bending rigidity are used. While this model is less detailed than the averaged
model, its vibration results are essentially identical to those of the averaged model.
In section 5, a "nite element analysis is used to determine the magnitude of the
surface undulations created by the channels when the disk rotates. These
undulations arise from the fact that loads in one direction in a material create
strains in the two orthogonal directions for any material in which the Poisson ratio
is non-zero. It is determined that for su$ciently dense channels, the surface
undulations are at least an order of magnitude below the current #ying heights of
read/write heads. Finally, in section 6, experimental results are presented which
corroborate the numerical predictions.

2. MODELLING

2.1. DISKS GEOMETRY

A thin, circular disk is clamped at inner radius R
i
, free at outer radius R

o
, and

spins about its central axis at a constant angular speed X*. The disk material has
density o, Young's modulus E, and the Poisson ratio v. Polar co-ordinates (R, h)
are "xed in the stationary frame of reference with the center of the disk at the
origin.

In the annulus R
ci
)R)R

co
, a series of evenly spaced rectangular channels

symmetrically arranged about the midplane of the disk are carved into the interior
of the disk as shown in Figure 1. b (R, h) is the angle between the channel and a unit
vector in the radial direction. The material adjacent to the channel is termed a rib
and adjacent channels and ribs are termed channel/rib pairs. The fractional width
of a channel/rib pair occupied by the channel is a; the fractional width occupied by
the rib is (1!a). The thickness of each rib is H

r
which equals the thickness of the

plate in regions of the disk that possess no channels. The height of each channel is
H

c
. The #exural rigidity of each rib is D

r
"EH3

r
/12(1!v2).



Figure 1. The channelled disk geomtry.

358 A. A. RENSHAW
The density of channel/rib pairs is assumed to be su$ciently high such that the
behavior of the disk can be modelled using variables that are averaged over each
channel/rib pair. Thus, even though the "ne structure of the channels rotates,
average mass, sti!ness and in-plane stresses are determined by the distribution
b(R, h). When b"b(R) this distribution is axisymmetric, and the average mass,
sti!ness, and in-plane stresses become independent of the angle of rotation.
Although this assumption only approximates the actual system, it provides
a framework for the following engineering model.

De"ne N1 *
r
, N1 *h , and N1 *

rh as the average in-plane stress resultants across the
thickness of the disk and=1 (R, h, ¹) as the average transverse displacement of the
disk where ¹ is time. Dimensionless variables are de"ned by

r"R/R
o
, t"¹JD

r
/oH

r
R4

o
, wN "=M /H

r
, NM "NM *R2

o
/D

r
, (1)
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where the subscripts on NM and N1 * have been omitted for brevity. Dimensionless
parameters are de"ned by

i"R
i
/R

o
, r

ci
"R

ci
/R

o
, r

co
"R

co
/R

o
, h

c
"H

c
/H

r
, X"X*JoH

r
R4

0
/D

r
,

(2)

and the average dimensionless thickness and #exural rigidity are

h1 "G
(1!a)#a(1!h

c
),

1,
r
ci
)r)

co
,

i)r)r
ci

and r
co
)r)1,

(3)

DM "G
(1!a)#a(1!h3

c
),

1,
r
ci
)r)

co
,

i)r)r
ci

and r
co
)r)1.

(4)

Calculation of the natural vibration frequencies in two steps. First the in-plane,
centripetal stress resultants are determined. Second, these resultants are incorporated
into a model describing bending of the disk to determine the natural frequencies.

2.2. STRESSES

The dimensionless plane stress equilibrium equations with a centripetal body force
are [30]

NM
r,r
#

1
r
NM

rh,h#
1
r
(NM

r
!NM h)"!h1 X2r, (5)

1
r
NM h,h#NM

rh,r#
2
r
NM

rh"0, (6)

where a comma denotes partial di!erentiation. The average in-plane strains, e6
r
, e6 h,

and c6
rh , are related to the average radial and circumferential displacements uN and vN by

e6
r
"uN

,r
, e6 h"uN /r#vN

,h/r, cN
rh"uN

,h/r#vN
,r
!vN /r. (7)

(In order to simplify the following, we normalize the strains and displacements by
12R2

o
/H2

r
and 12R3

o
/H2

r
respectively.) A constitutive relationship is needed relating the

average stress resultants to the average in-plane strains in order to reduce equations
(5) and (6) to two di!erential equations for uN and vN . Deriving this constitutive
relationship is the crux of the modelling.

Consider a small element comprising a single channel/rib pair. Local Cartesian
co-ordinates (m, g) are aligned with m) tangent to the channel/rib pair. The stresses and
strains in the rib in the (m, g) co-ordinate system, prm, prg, prmg, erm, erg, and crmg, are assumed
to be constant over the rib. The stresses and strains in the channel use the same
notation with a superscript c. The stresses and strains in the rib are related by the
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dimensionless isotropic plane stress relations

C
prm
prg
qrmgD"C

1 v 0

v 1 0

0 0 (1!v)/2D C
erm
erg
crmgD (8)

and similarly for the channel. We make three assumptions concerning the behavior of
the element:
(1) The strains in the m) direction in the rib and the channel are the same, i.e.,

erm"ecm . (9)

(2) The total force in the g( direction in the rib and the channel is the same, i.e.,

prg"pcg(1!h
c
). (10)

(3) The total shear across the channel/rib interface is the same, i.e.,

qrmg"qcmg(1!h
c
). (11)

These assumptions are analogous to treating the rib and channel as springs in
parallel in the m) direction and springs in series in the g( direction. Consistent average
strains and resultants are then de"ned by

e6 m"erm"ecm, e6 g"(1!a)erg#aecg, c6 mg"(1!a)crmg#accmg, (12)

NM m"(1!a)prm#a(1!h
c
)pcm, N1 g"prg"(1!h

c
)pcg, N1 mg"qrmg"(1!h

c
)qcmg .

(13)

Consider three, separate cases in which a uniform, average strain is applied. When
a constant e6 m is applied with e6 g"c6 mg"0, the actual strains erg and ecg must be non-zero
in order to satisfy equation (10). These non-zero actual strains are determined from
equation (10) and e6 g"0. Substituting these values into equations (12) and (13) then
gives

NM m"eN m hM (1!gv2), N1 m"e6 m h1 (v!gv2), N1 mg"0, (14)

where

g"
a(1!a)h2

c
h1 [1!(1!a)h

c
]
. (15)

When a constant e6 g is applied with e6 m"c6 mg"0, equations (12) and (13) give

N1 m"e6 gh1 (v!gv2), N1 m"e6 gh1 (1!g), N1 mg"0. (16)

Finally, when a constant c6 mg is applied with e6 m"e6 g"0, equations (12) and (13) give

NM m"0, N1 m"0, N1 mg"c6 mgh1 (1!v)(1!g)/2. (17)
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These three results can be superimposed to give the orthotropic constitutive
relation

C
N1 m
N1 g
N1 mgD"h1 C

(1!gv2) (v!gv2) 0

(v!gv2) (1!g) 0

0 0 (1!v)(1!g)/2D C
e6 m
e6 g
c6 mgD (18)

which reduces to the isotropic case when g"0. Equation (18) can be rotated to give
an orthotropic relation in the (r, h) co-ordinate system [31, 32]:

C
N1 m
N1 g
N1 mgD"h1 C

(1#gf
11

) (v#gf
22

) gf
13

(v#gf
12

) (1#gf
22

) gf
23

gf
13

gf
23

(1!v)/2#gf
33D C

e6 m
e6 g
c6 mgD, (19)

where

f
11
"![5#3v2!4(1!v2) cos(2b)!(1!v2) cos(4b)]/8,

f
12
"[1!8v!v2!(1!v2) cos(4b)]/8,

f
13
"(1!v2)[2 sin(2b)#sin(4b)]/8,

f
22
"![5#3v2#4(1!v2) cos(2b)!(1!v2) cos(4b)]/8,

f
23
"(1!v2)[2 sin(2b)!sin(4b)]/8,

f
24
"!(1!v)[3!v#(1#v) cos(4b)]/8. (20)

For the general problem, the boundary conditions are

NM
r
"NM

rh"0 at r"1, (21)

uN "vN"0 at r"i. (22)

For our problem, however, we assume that b"b(r) so the average problem becomes
axisymmetric. Consequently, uN "uN (r), vN"vN (r), NM

r
,NM

r
(r), NM h,NM h(r), and N1

rh,0.
As a result, equation (6) is identically satis"ed. By enforcing NM

rh,0, one can
eliminate v6 and simplify equation (19) to

C
NM m
NM gD"h1 C

1#gf
11
!c2

13
/c

33
v#gf

12
!c

13
c
23

/c
33

v#gf
12
!c

13
c
23

/c
33

1#gf
22
!c2

23
/c

33
DC

u6
,r

uN /rD, (23)

where

c
13
"gf

13
, c

23
"gf

23
, c

33
"(1!v)/2#gf

33
. (24)

Equation (23) can then be substituted into equation (5) to give a single di!erential
equation for u6 .

2.3. TRANSVERSE DISPLACEMENT

Let the average, dimensionless moments acting on the disk be M1
r
, MM h, and MM

rh .
The equation describing the vibration of the disk in the stationary frame of reference,
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using classical Kirchho! plate theory with axisymmetric in-plane stresses [30, 32] is

h1 (wN
,tt
#2XwN

,th#X2wN
,hh)"(rN1

r
wN
,r
)
,r
/r#N1 hwN ,hh/r2

#(r2MM
r,r
#2rMM

rh,h),r/r2!M1 h,r/r#M1 h,hh/r2. (25)

Equation (25) can be reduced to a single equation for w6 by formulating a constitutive
relation between the average moments and wN . This procedure is analogous to that of
section 2.2.

Let the strains in the rib be related to the transverse de#ection of the rib wr

according to

erm"!zwr
,mm, erg"!zwr

,gg, crmg"!2zwr
,mg , (26)

where z is the co-ordinate perpendicular to the midplane of the disk and wr(t, m, g) is
independent of z. The resultant moments in the rib are

Mrm"P zprmdz, Mrg"P zprgdz, Mrmg"P zqrmgdz, (27)

where the integral is over the disk thickness. Equations (26) and (27) also apply for the
de#ections, strains, and moments in the channel with a superscript c. For the channel,
equation (26) implies that the disk materials above and below the channel do not
move independent of one another. This will only be true for su$ciently dense
channels.

We require

erm"ecm, Mrg"Mcg, Mrmg"Mcmg (28)

and de"ne consistent average curvatures and moments by

wN
,mm"wr

,mm"wc
,mm, wN

,gg"(1!a)wr
,gg#awc

,gg,

wN
,mg"(1!a)wr

,mg#awc
,mg, (29)

M1 m"(1!a)Mrm#aMcm, MM g"Mrg"Mcg, MM mg"Mrmg"Mcmg . (30)

Following an analysis identical to that of section 2.3., we obtain

C
M1

r
M1 h
M1

rhD"!D1 C
1#df

11
v#df

12
df

13
v#df

12
1#df

22
df

23
df

13
df

23
(1!v)/2#df

33D C
wN
,rr

wN
,r
/r#wN

,hh/r2
2(wN

,h/r),r D , (31)

where

d"
a(1!a)h6

c
D1 [1!(1!a)h3

c
]
. (32)

As in the previous section, when a constant w6
,mm is applied, wr

,gg and wc
,gg must be

non-zero in order to satisfy the modelling assumptions. These strains make the actual
transverse displacement undulate about the mean displacement as one goes across
the rib/channel pairs. Substitution of equation (31) into equation (25) gives
a single partial di!erential equation to be solved for w6 . Unfortunately, M1

rh is in
general non-zero so equation (31) cannot be further simpli"ed.
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The boundary conditions on w6 are

wN "wN
,r
"0 at r"i. (33)

MM
r
"0 at r"1, (34)

<1
r
,!M1

r,r
!

2
r
M1

rh,h!
1
r
(MM

r
!M1 h)"0 at r"1. (35)

Dimensionless natural frequencies are obtained using the separable substitution

wN (r, h, t)"ei(ut#nh)w(r), (36)

where u is the natural frequency, n is an integer and i"J!1. This leads to the
dimensionless eigenvalue problem

(u#nX)2h1 w#(rNM
r
w
,r
)
,r
/r!n2NM hw/r2

#(r2M
r,r
#2inrM

rh),r/r2!Mh,r/r!n2Mh/r2"0, (37)

where

C
M1

r
M1 h
M1

rhD"!D1 C
1#df

11
v#df

12
df

13
v#df

12
1#df

22
df

23
df

13
df

23
(1!v)/2#df

33D C
wN
,rr

wN
,r
/r!n2w/r2

2in(w/r)
,r D . (38)

The eigenvalue problem is complex except for b"0 or n"0 because f
13
O0 and

f
23
O0.
In the sequel, the stresses and natural frequencies are determined using Galerkin's

method with eight independent radial polynomials representing u6 and six
independent radial polynomials representing w. These representations give
frequencies within 1% of those with twice as many degrees of freedom. Although the
eigenvalue problem is complex, all computed natural frequencies are real.

3. OPTIMAL CHANNEL DESIGN

3.1. THE STATIONARY DISK

For the stationary disk, the stresses vanish and the natural frequencies are
determined by six parameters: i, r

ci
, r

co
, b, a, and h

c
. i is considered a given.

Consequently, there are "ve free parameters available for maximizing the disk's
natural frequency.

Calculations support two general conclusions concerning the natural frequencies.
First natural frequencies are maximized by r

co
"1 regardless of the values of the

other parameters. Second, changes in b produce negligible changes in the natural
frequencies. This second conclusion derives from the fact that the orthotropic
behavior of the disk is modulated by the parameter d, which is proportional to h6

c
.

For example, when a"h
c
"0)5, d"0)0074. Consequently, changes in the natural

frequency are dominated not by the particular pattern of channels cut into the disk,
but by the relative ratios of D1 and h1 which determine the relative sti!ness and mass of
the system.
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For r
co
"1, an optimal value of r

ci
exists as a function of the other parameters.

Figure 2 shows the "rst "ve, dimensionless natural frequencies (n"0, 1,2 , 4) as
a function of r

ci
for i"0)3, b"0, and a"h

c
"0)5. All "ve frequencies are

minimums when r
ci
"1, which equals the natural frequencies of a disk with no

channels. As r
ci

decreases, the natural frequencies rapidly increase, level o! at about
a 10% increase, and "nally decrease somewhat as r

ci
approaches i.

Figure 3 shows the optimal values of r
ci

as a function of i for the "rst "ve
frequencies for b"0, and a"h

c
"0)5. Also shown are the values of r

ci
at which 60%

of the optimal increase is achieved. For i'0)3, the optimal value of r
ci

is essentially
the same for all "ve frequencies and is approximately

r
ci~opt

&0)6i#0)4. (39)

Since the increase in natural frequency is rapid as r
ci

initially decreases from
one, a substantial fraction of the optimal increase is achieved with relatively
short channels. The results show that approximately 2/3 of the total increase in
natural frequency is achieved when the channel is approximately 1/3 of its optimal
length.

Figure 4(a) shows a contour plot of the percentage increase in the n"1 natural
frequency over its value when no channels are present for various values of a and h

c
.

Figure 4(b) shows a similar contour plot for n"3. The values were computed for
i"0)3, r

ci
"0)57 (the optimal value), and b"0. These two frequencies, n"1 and 3,

are representative of all frequencies. In this particular case, the n"1 frequency is the
smallest. The increase for n"1 ranges from 0% to approximately 100% depending
on the values of a and h

c
, while the increase for n"3 ranges from !10 to 60%

with in a similar pattern. As expected, higher increases occur for larger values of a
and h .
Figure 2. The natural frequencies of the n"0 to 4 vibration modes as a function of the transition
radius: i"0)3, b"0, and a"h

c
"0)5. X"0.

c



Figure 3. The optimal transition radius (*) for the n"0 to 4 frequencies as a function of i.
The transition radius at which 60% of the maximum increase is achieved is shown by the dashed
results.
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3.2. THE ROTATING DISK

When the disk rotates, a centripetal stress "eld is generated in the disk, which is
modulated by the presence of the channels. However, the magnitude of this
modulation is governed by the parameter g, which is small. Consequently, one
anticipates that the principal design parameters for the rotating disk will be r

ci
, a, and

h
c
as they were for the stationary disk, that r

co
"1 will be optimal in all cases and that

the e!ect of b will be negligible.
In fact, this turns out to be the case. For di!erent rotation speeds, the optimal

values of r
ci

are essentially the same as they are for the stationary disk.
Figure 5 shows a Campbell diagram displaying the natural frequencies of
a channelled (a"h

c
"0)5, b"0, r

ci
"0)57) and unchannelled disk as a function of

X for i"0)3. For clarity, only the modes n"0 to 5 are shown. The presence of the
channels increases all frequencies by approximately the same amount regardless of
the rotation speed.



Figure 4. Contour plots of the percentage increase in the (a) n"1 and (b) n"3 frequencies as
functions of a and h

c
. Contour values are shown on the right.
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4. A SIMPLIFIED MODEL

Given the negligible e!ect of the b on the natural frequencies of the system, it seems
likely that acceptable predictions can be made using a simpler model in which only
the e!ects of h1 and D1 are incorporated. This kind of model has been used in the



Figure 5. A Campbell diagram showing the natural frequencies of a channelled (*) disk with
a"h

c
"0)5, b"0, r

ci
"0)57, and an unchannelled (} } } }) disk as a function of X for i"0)3. For

clarity, only the modes n"0 to 5 are shown.
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analysis of disks with stepped, radial pro"les. In this model, equation (37) is
replaced by

(u#nX)2 h1 w#h1 (rp
r
w
,r
/r!n2h1 phw/r2!D1 +4

n
w"0, (40)

where +4
n

is the biharmonic operator for a mode with n nodal diameters. Two
di!erent expansions are used for both the stresses and displacements. For i)r)r

ci
,

the stresses will take the form

p
r(l)

"X2[a
1
/r2#b

1
#c

3
r2], ph(l)"X2[!a

1
/r2#b

1
#c

4
r2], (41)

while for r
ci
)r)1, the stresses will be

p
r(2)

"X2[a
2
/r2#b

2
#c

3
r2], ph(2)"X2[!a

2
/r2#b

2
#c

4
r2], (42)

where

c
3
"!(3#v)/8, c

4
"!(1#3v)/8. (43)

The four constants a
1
, b

1
, a

2
, and b

2
are determined from four stress boundary

conditions which prescribe vanishing radial displacement at r"i, matching radial
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displacement and radial resultant force at r"r
ci
, and vanishing radial stress at r"1.

Similarly, the two expansions for w will be determined by the boundary conditions
that w and w

,r
vanish at r"i, w, w

,r
, the radial bending moment and shear, are

continuous at r"r
ci
, and that the radial bending moment and shear vanish at r"1.

Table 1 compares the natural frequency predictions of the averaged and simpli"ed
models for X"0 and 1 for a disk with a"h

c
"0)5, h1 "0)75, D1 "0)9375, i"0)3,

and r
ci
"0)57. In both cases, the di!erences in the natural frequency predictions for

n"0 through n"5 are signi"cantly less than 1%. In other words, despite the
additional detail of the averaged model its predictions are essentially identical to
those of the simpler model.

The simpli"ed model possesses at least two advantages. First, it is computationally
much simpler than the averaged model presented in section 2. Second, it is easy to
determine h1 and D1 for non-rectangular channel cross-sections. For example, for
channels with circular cross sections,

h1 "1!a#a(1!n//4), D1 "1!a#a(1!3n/3/16), (44)

where / is the ratio of the channel diameter to H
r
and a is the fractional width of the

channel along the midplane.
TABLE 1

Frequency comparison of the averaged and simpli,ed model. a"h
c
"0)5;

h-bar"0)75; D-bar"0)9375: i"0)3; r
ci
"0)57

Vibration Uniform Averaged Percent Simpli"ed Percent Di!. in
mode disk model increase (%) model increase (%) Inc. (%)

X"0
(0, 0) 6)66 7)61 14)19 7)61 14)25 !0)06
(0, 1) 6)55 7)49 14)35 7)50 14)40 !0)05
(0, 2) 7)96 9)04 13)61 9)05 13)71 !0)09
(0, 3) 13)28 14)92 12)36 14)94 12)53 !0)17
(0, 4) 22)07 24)70 11)88 24)74 12)08 !0)21
(0, 5) 33)56 37)49 11)71 37)56 11)93 !0)22

X"1
(0, 0) 6)75 7)69 13)89 7)69 13)93 !0)04
(0, 1)

b
5)67 6)59 16)38 6)60 16)43 !0)04

(0, 1)
f

7)67 8)59 12)11 8)60 12)14 !0)03
(0, 2)

b
6)10 7)16 17)38 7)17 17)53 !0)15

(0, 2)
f

10)10 11)16 10)50 11)17 10)59 !0)09
(0, 3)

b
10)41 12)03 15)54 12)06 15)79 !0)25

(0, 3)
f

16)41 18)03 9)86 18)06 10)02 !0)16
(0, 4)

b
18)20 20)80 14)29 20)85 14)56 !0)27

(0, 4)
f

26)20 28)80 9)92 28)85 10)11 !0)19
(0, 5)

b
28)67 32)58 13)63 32)65 13)90 !0)27

(0, 5)
f

38)67 42)58 10)10 42)65 10)31 !0)20

Note: Mode (m, n) refers to vibration modes with m nodal circles and n nodal diameters;
subscript f refers to forward travelling modes, subscript b to backward travelling modes.



Figure 6. Contour plot of the percentage increase in the n"1 frequency as a function of h1 and
DM using the simpli"ed model: i"0)3 and r

ci
"0)57.
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Figure 6 shows a contour plot of the percentage increase in the n"1 frequency for
i"0)3 and r

ci
"0)57 for various values of h1 and D1 . This design chart can be used

regardless of the channel cross section.

5. SURFACE UNDULATIONS

One potential drawback of internal channels for hard disk drive disks is dimpling
of the outer surfaces of the disk. During rotation, the tensile in-plane stresses will
cause a contraction of the disk in the transverse direction unless the Poisson ratio is
zero. The contraction will be greater over the channels than over the ribs, resulting in
an undulating or dimpled surface. Similar undulations will occur in the in-plane
distortion of the disk (circular recording tracks of the disk will undulate out of
circularity) during bending. Each of these issues needs to be addressed in the design of
channeled disks. We present results of the transverse undulations caused by in-plane
stresses. The results for in-plane distortions and bending are expected to be
qualitatively similar.
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In disk drive applications, dimpling and undulations can cause variations in the
#ying height of the read/write head as the disk spins, which in turn could degrade
magnetic recording "delity. The obvious solution to this is to lap or polish the sur-
face to the necessary #atness while it is rotating. Undulations would then occur when
the disk was stationary but not when in use. Another possible solution is to use active
control of the recording head actuator to compensate for surface undulations.
However, for a disk with 100 channels turning at 6000 r.p.m. the undulation
frequency is 10 kHz. Active control of such a high-frequency disturbance is di$cult.
An alternative solution is to make the channels su$ciently dense that the surface
undulations are at least an order of magnitude less than the #ying high of the
read/write head, which is presently about 2)5]10~8 m (1 microin). The purpose of
this section is to calculate the magnitude of the surface undulations in order to
prescribe appropriate channel density.

Since surface undulations of a rotating disk are a three-dimensional e!ect, we
abandon the variables of the previous sections, and adopt a new set of dimensionless
variables where all lengths have been normalized by R

0
and all stresses by E. Let

(r, h, z) be a polar co-ordinate system with its origin at the center of the disk and the
z-axis transverse to the plane of the disk. The dimensionless polar stresses are related
to the strains by the three-dimensional, isotropic constitutive relations. The
dimensionless centripetal body force acting in the radial direction is

F
r
"!u2r, (45)

where

u2"o(X*)2R2
o
/E. (46)

We also de"ne the dimensionless thickness of the disk,

h*"H
r
/R

o
. (47)

The solution of the elasticity problem is proportional to u2, so each problem need
only be solved for u2"1 and then scaled appropriately.

Typical values for a 3)5 in aluminum disk drive are o"2800 kg/m3,
X*"5400 r.p.m. R

o
"4)8 cm, R

i
"1)3 cm, H

r
"0)13 cm, and v"0)32. These give

u2"2)8]10~5, r
i
"0)26, and h*"0)017. Let the dimensionless peak to peak

magnitude of the surface undulations in the z direction for u2"1 be denoted by u
pp

.
Then, if the surface undulations are to be an order of magnitude less than the
read/write head #ying height, H

f
,

u
pp
((0)1)

H
f

u2R
o

&2]10~3 (48)

for the disk described above.
The equations of linear elasticity in cylindrical polar co-ordinates were solved

using eight-node, linear, brick "nite elements for r
i
"0)26, and h*"0)017. With

b"0, one quarter of a rib/channel pair needed to be modelled due to symmetry.
Figure 7 shows the mesh used for this problem at a "xed value of r. Vanishing
transverse displacements are prescribed along the bottom, z"0 edge, while
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vanishing circumferential displacements are prescribed along the left and vertical
right edges h"0 and Dh. The peak to peak undulation magnitude is the di!erence in
the transverse displacement of the upper left and right corners. In all cases, the
channel cross-section is elliptical with a"0)5. Two parameters where varied for each
run: the fractional height of the channel in comparison with the disk thickness and
the angular span, Dh, of the mesh. Since the mesh shown in Figure 7 is a quarter of
a channel/rib pair, Dh represents half the angular span of a channel/rib pair. That is
to say, when Dh"13, there are 180 channels distributed about the disk.

The mesh shown in Figure 7 was extruded in the r direction to obtain four layers of
elements between r"r

i
and 1. Consequently, there were 192 elements, 975 degrees of

freedom. The results for this mesh were within 15% of values obtained with the
element lengths halved (giving eight times as many elements) but took only 2}3 min
to solve on an SGI O2 workstation. This accuracy was considered adequate.

Figure 8 shows a contour plot of the peak to peak undulation magnitude, u
pp

, as
functions of the channel height and Dh. As expected, the smallest undulations occur
for small channel heights and small Dh. However, for this particular geometry,
u
pp

attains a maximum value for Dh between 3 and 53. In order to avoid this
maximum, there should always be more than 60 channels in the disk, ideally well
more than 60. For example, for u

pp
"0)002 (one-tenth of the #ying height) with

a channel height of 0)5, Dh&13, 180 channels in the disk are required. As the
channel density increases, u

pp
decreases rapidly and attains values low enough to

for disk drive applications.
Figure 7. Cross-section of the 3-D "nite element model at a "xed radius. The model is a quarter of
a channel/rib pair with an elliptical channel cross-section. The co-ordinates of the vertices are given.



Figure 8. A contour plot of the dimensionless peak to peak surface undulation magnitude for an
elliptical channel cross-section as a function of the channel height and the angular width of half
a channel/rib pair. The number of channels in the disk is 180/Dh.
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It should also be mentioned that dimpling could also be reduced by "lling the
channels with a light, sti! substance that would resist the transverse contraction of
the channels. If this substance also had high damping, the damping behavior of the
disk could also be signi"cantly increased.

The practicality of the present design depends crucially on two issues: one, the
cost of manufacturing the channelled disk, which must be competitive with the
extremely inexpensive stamping method used for solid disks; and two, the #atness
and lack of distortion of the disk during rotation. The latter issue appears to
a challenge that can be overcome with proper design. The former issue, cost,
requires further investigation.

6. EXPERIMENTAL CORROBORATION

The numerical predictions were corroborated by measuring the natural
frequencies of two di!erent size, thin uniform, aluminum disks when rigidly
clamped at R

i
"38)1 mm (1)5 in). For Disk d1, H

r
"5)08 mm (0)2 in),



TABLE 2

Experimental results showing the e+ect of adding radial channels with circular
cross-sections to two di+erent disks

Theoretical prediction Experimental measurements
Freq. Freq.

without Freq. with Percent without Freq. with Percent
Vibration channels channels increase Vibration channels channels increase

mode (Hz) (Hz) (%) mode (Hz) (Hz) (%)

Disk d1
(0, 0) 512 549 7)2 (0, 0) 388 415 7)0
(0, 1) 504 540 7)1 (0, 1) 388 407 4)9
(0, 2) 612 655 7)0 (0, 2) 564 609 8)0
(0, 3) 1021 1092 7)0 (0, 3) 985 1035 5)1
(0, 4) 1698 1817 7)0 (0, 4) 1653 1731 4)7

Disk d2
(0, 0) 1863 2109 13)2 (0, 0) 1748 1926 10)2
(0, 1) 1895 2145 13)2 (0, 1) 1770 1957 10)6
(0, 2) 2132 2408 12)9 (0, 2) 2176 **
(0, 3) 2851 3205 12)4 (0, 3) 2504 2692 7)5

Note: Mode (m, n) refers to vibration modes with m nodal circles and n nodal diameters.
No (0, 2) mode was found for Disk d2 with channels.
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R
o
"127 mm (5 in) and i"0)3. For Disk d2, H

r
"5)08 mm (0)2 in), R

o
"84 mm

(3)3 in), and i"0)45.
After measuring the natural frequencies of the uniform disk, channels were

formed by drilling 2)54 mm (0)1 in) diameter holes radially (b"0) into the outer
edge of the disk. For Disk d1, 120 holes were drilled to a depth of 25)4 mm (1 in)
giving r

ci
"0)8. For Disk d2, 100 holes were drilled to a depth of 28)9 mm (1)1 in)

giving r
ci
"0)67. Because these holes are of constant diameter, the value of a varies

with the radial depth of the hole. The average a was 0)43 for Disk d1 and 0)59 for
Disk d2. These give h1 "0)83 and D1 "0)97, and h1 "0)77 and D1 "0)96
respectively. Although care was taken in drilling these holes, the centerlines of the
holes were not precisely on the midplane of the disk. Consequently, the theoretical
analysis overestimates DM /hM and the increase in natural frequencies.

Analytical predictions and measured results for both disks are shown in Table 2.
For Disk d1, the theoretical analysis predicted natural frequency increases of
about 7%; experimental increases between 4)7 and 8% were observed. For Disk
d2, the theoretical analysis predicted natural frequency increases of about 13%;
experimental increase between 7)5 and 10)6% were observed. As expected, the
numerical results overestimated the actual increase, but the result qualitatively
corroborate the analytical predictions.

7. CONCLUSIONS

(1) Two models are formulated and investigated which predict the natural
frequencies of disks with internal channels. First, the in#uence of the channel is
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averaged locally in order to determine the e!ects of channel orientation and
geometry. Second, the average plate thickness and bending rigidity are applied
as they would for a stepped disk. The prediction of both models are essentially
identical.

(2) In the optimal design, the channels begin at an internal radius and extend
outwards to the outer edge of the disk. The orientation of the channels does not
matter.

(3) Natural frequency increases of 10}100% are possible depending on the size of
the channels. The highest natural frequencies occur when the ratio of DM /hM is
greatest.

(4) Dimpling of the outer surface can be made less than an order of magnitude of
the current read/write head #ying height for disk drives provided there are well
more than 60 channels in the disk.

(5) Experimental results corroborate the analytical predictions.
(6) Because the optimal design is potentially moldable, channel disk may be

competitive with uniform disks for disk drive applications.
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